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Tropical tree ectomycorrhiza are distributed 
independently of soil nutrients

Mycorrhizae, a form of plant–fungal symbioses, mediate vegetation impacts 
on ecosystem functioning. Climatic effects on decomposition and soil 
quality are suggested to drive mycorrhizal distributions, with arbuscular 
mycorrhizal plants prevailing in low-latitude/high-soil-quality areas and 
ectomycorrhizal (EcM) plants in high-latitude/low-soil-quality areas. 
However, these generalizations, based on coarse-resolution data, obscure 
finer-scale variations and result in high uncertainties in the predicted 
distributions of mycorrhizal types and their drivers. Using data from  
31 lowland tropical forests, both at a coarse scale (mean-plot-level data) and 
fine scale (20 × 20 metres from a subset of 16 sites), we demonstrate that 
the distribution and abundance of EcM-associated trees are independent 
of soil quality. Resource exchange differences among mycorrhizal partners, 
stemming from diverse evolutionary origins of mycorrhizal fungi, may 
decouple soil fertility from the advantage provided by mycorrhizal 
associations. Additionally, distinct historical biogeographies and 
diversification patterns have led to differences in forest composition and 
nutrient-acquisition strategies across three major tropical regions.  
Notably, Africa and Asia’s lowland tropical forests have abundant EcM  
trees, whereas they are relatively scarce in lowland neotropical forests.  
A greater understanding of the functional biology of mycorrhizal symbiosis 
is required, especially in the lowland tropics, to overcome biases from 
assuming similarity to temperate and boreal regions.

Many plants establish symbiotic relationships with soil microbes, ena-
bling them to access soil resources that would otherwise be unavailable 
or to gain protection against biotic and abiotic stress1. One largely 
recognized form of symbiosis is the association between the major-
ity of vascular plants and mycorrhizal fungi, which occurs in or on the 
roots and is known as mycorrhiza2. Mycorrhizal fungi can improve 
plant mineral nutrition3, stress tolerance (for example, to drought) 
and defence (for example, to soil-borne pathogens)4. In exchange, the 
host plant provides the fungus with the carbon required for function-
ing5. Most trees associate with either arbuscular mycorrhizal (AM; but 
refer to refs. 6,7) or ectomycorrhizal (EcM) fungi, forming the AM and 
EcM types, respectively. AM predominate in the number of host tree 
species—about 72% of vascular plant species are AM and about 2% are 

EcM8. AM and EcM types differ in their nutrient economies and effects 
on soil biogeochemistry3,9, and variations in their relative dominance 
may have large-scale consequences for ecosystem functioning and 
biogeochemical cycles10,11. Therefore, accurate characterization of 
the distribution of mycorrhizal types and the factors that drive their 
distribution is critical to understanding and modelling forest biogeo-
chemistry and, ultimately, climate feedbacks.

Differences in traits between AM and EcM fungi and between 
AM and EcM-associating trees suggest differences in their nutrient 
economies and foraging strategies. It is generally accepted that EcM 
fungi have a higher capacity to mobilize nitrogen (N) and phosphorus 
(P) from soil organic matter than AM fungi3,9. The high capacity of 
EcM fungi to exploit soil organic matter can lead to a reduction in 

Received: 17 March 2023

Accepted: 1 December 2023

Published online: xx xx xxxx

 Check for updates

 e-mail: jamedinavega@gmail.com

A list of authors and their affiliations appears at the end of the paper

http://www.nature.com/natecolevol
https://doi.org/10.1038/s41559-023-02298-0
http://crossmark.crossref.org/dialog/?doi=10.1038/s41559-023-02298-0&domain=pdf
mailto:jamedinavega@gmail.com


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-023-02298-0

forests by testing the hypothesis that the distribution and abundance 
of EcM trees in lowland tropical forests are related to variations in soil 
properties. We focused on EcM trees because the abundance of EcM 
tree and AM tree individuals are generally inversely related19,31. We 
compiled data on the relative abundance of EcM trees (the propor-
tion of basal area (BA) contributed by EcM trees) and soil properties 
of 31 lowland tropical forests from the Forest Global Earth Observa-
tory (ForestGEO) plot network of research sites32 and the literature  
(Fig. 1a, Extended Data Table 1 and Extended Data Fig. 1). We created 
two datasets. The first dataset contained mean-plot-level data on the 
relative abundance of EcM trees, soil chemistry (Al, Ca, K, Mg, Mn, Na, 
CEC (cation exchange capacity) and TEB (total exchangeable bases) 
in cmolc kg−1, plant-available P in mg kg−1, pH and BS (percent base 
saturation)) and soil texture (the proportion of sand, clay and silt 
content) for 30 sites from three regions: neotropics, Africa and Asia. 
A single site from Oceania was excluded from this mean-plot-level 
dataset due to sample size (Methods; statistical analyses for the 
coarse-scale data). The second dataset contained the fine-scale data 
(quadrat-level; 20 × 20 m) on the relative abundance of EcM trees and 
soil chemical properties for 16 sites (Extended Data Table 2), which 
were the maximum number of sites with all trees ≥1 cm in diameter 
at breast height (DBH) identified and with the most complete and 
consistently measured set of soil variables, including Al, Ca, K, Mg, Na, 
Fe, Mn, plant-available P and pH. Refer to methods for a full descrip-
tion of the datasets.

We used principal component analysis (PCA) to construct gradi-
ents in soil properties at both coarse (using mean-plot-level soil data) 
and fine (using soil data at every 20 × 20 m quadrat) scales. Both PCAs 
revealed similar patterns (Fig. 1b,c). The first principal component 
(PC) of both PCAs described variation in soil chemical properties (soil 
nutrient availability) and increased with increasing concentrations of 
soil bases and pH and with decreasing Al (Extended Data Table 3). The 
second PC was comparable at both fine and coarse scales. The second 
PC described variation in soil physical properties and P availability 
and increased with clay content (Fig. 1b) and Na (Fig. 1b,c) concentra-
tion and with decreasing sand content (Fig. 1b) and P concentration  
(Fig. 1b,c). We included the two PCs from both PCAs as covariates in 
both a generalized linear model (GLM) and a generalized linear mixed 
effects model (GLMM) to assess the association between EcM tree 
abundance in BA and soil properties. The GLM was used to analyse 
coarse-scale associations across forests, whereas the GLMM was used to 
analyse fine-scale associations within and among forests. Given a high 
presence of zeroes in the fine-scale dataset (Extended Data Table 2),  
the GLMM was a joint model with two components, a discrete com-
ponent to assess if an event occurs (the probability of observing EcM 
trees) and a continuous component to assess the event’s intensity given 
that it occurs (the relative abundance in BA of EcM trees conditional 
on their occurrence; Methods)33,34. We included quadrat-level topo-
graphy (elevation, slope and convexity) and (total) BA in the analysis 
on fine-scale data to characterize the terrain and to control for differ-
ences in exposure (a higher opportunity of observing EcM trees and 
higher relative abundance of EcM trees in quadrats with larger BAs or 
the opposite), respectively.

Results and discussion
The relative abundance in BA of EcM trees in lowland tropical for-
ests exhibited high variability and was unrelated to the variation in 
soil properties at both coarse and fine scales (Figs. 2 and 3). At the 
coarse scale (using mean-plot level data), the relative abundance of 
EcM trees ranged from 0.02% to 84.5% BA (mean 22%), being lower in 
the neotropics (range = 0.02–2.3%, mean = 0.8) than the Afrotropics  
(range = 2.3–62.6%, mean = 30.4) or Southeast Asia (range = 3.2–84.5%, 
mean = 30.5). Additionally, the relative abundance of EcM trees at the 
coarse scale was independent of soil variation among and within these 
three major tropical regions (Fig. 2 and Extended Data Table 4).

litter decomposition (the Gadgil effect12), as EcM fungi obtain car-
bon from their host plant and effectively compete with decompos-
ers such as saprotrophic fungi, which rely on decomposing organic 
matter for carbon. Some AM fungi can also acquire N13 and P14 from 
organic sources by recruiting and hosting distinct bacteria in their 
extraradical hyphae (the hyphosphere microbiome). Whereas EcM 
fungi are mostly recognized for their high capacity to mobilize N and 
P in nutrient-limited and organic soils3,15, they, like AM fungi, also con-
tribute to the mobilization of other nutrients such as potassium (K), 
magnesium (Mg), calcium (Ca), sulfur (S), iron (Fe), zinc (Zn), copper 
(Cu) and manganese (Mn)16. EcM trees may have longer-lived leaves and 
more recalcitrant litter, leading to a slower nutrient economy than AM 
trees17. The combination of the poor-quality litter of EcM trees and the 
high capability of EcM fungi to acquire nutrients from it may result in 
a positive feedback between slow decomposition rates and increased 
soil organic matter accumulation9. In such forests, it is predicted that a 
high accumulation of organic matter and a low availability of nutrients 
in inorganic form may ultimately favour and lead to a dominance of EcM 
(the mycorrhizal-associated nutrient economy framework in ref. 9). 
Differences in the nutrient economies and foraging strategies between 
EcM and AM fungi and between AM and EcM-associating trees may lead 
to divergent costs and benefits along spatial environmental gradients 
(but refer to ref. 18), which may result in different distributions.

The dominant hypothesis for global patterns in mycorrhizal sym-
biosis is that the relative abundance of EcM decreases along a gradient 
from cold and/or dry to warm, wet climates through the effects of 
climate on soil development and decomposition rates19,20. A recent 
quantitative approximation of the global distribution of forest–tree 
mycorrhizal symbionts found that EcM dominate at higher latitudes 
(and higher elevations), where generally lower temperatures and pre-
cipitation lead to slower decomposition rates and lower availability of 
nutrients in inorganic forms19. Conversely, AM were found to dominate 
at lower latitudes (and lower elevations), where warmer, wetter envi-
ronments lead to faster decomposition rates and higher availability 
of nutrients in inorganic forms19. These global-scale approximations 
of the distribution of AM and EcM appear to be consistent with their 
different nutrient economies3,9. However, these approximations are 
based on a coarse resolution of global vegetation, climate and soil 
patterns and obscure large variations at finer scales and dramatically 
underrepresent tropical forests. As a result, there remain high uncer-
tainties in both the predicted distributions of mycorrhizal types21,22 
and the drivers of those distributions.

In tropical forests, the dominance of EcM trees generally increases 
with elevation19. In lowland tropical forests, EcM associations are often 
described as patchy and rare8 and are generally suggested to be found 
in forests characterized by single-species dominance, deep leaf litter 
and nutrient-poor sites15,19,23. However, known counter-examples to 
this generalization include tropical lowland forests dominated by 
many EcM tree species (for example, the diverse mixed dipterocarp 
forests in Southeast Asia24 or mixed-legume forests in tropical Africa25), 
a lack of association between the distribution of EcM host trees and 
soil chemical properties23 and forests dominated by single AM spe-
cies (for example, Mora excelsa Benth. (Fabaceae))26. Additionally, the 
differences in traits between EcM and AM tree species and between 
EcM and AM fungal taxa supporting contrasting mycorrhizal nutrient 
economies or foraging strategies do not always hold. EcM fungi do not 
always improve plant nutrient uptake in comparison to AM fungi when 
grown in the same soil medium27, and foliar traits of AM and EcM trees 
do not always differ in the expected ways28. These findings challenge 
the existence of a universally applicable mycorrhizal-associated nutri-
ent economy, particularly in lowland tropical forests (refs. 29,30 for 
examples in South American temperate regions), and suggest that the 
drivers that shape their distribution need to be re-examined.

We evaluated the applicability of the mycorrhizal-associated 
nutrient economy framework across lowland terra firme tropical 
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At the fine scale (20 × 20 m quadrats), the probability of observ-
ing EcM trees and the relative abundance of those EcM trees were also 
independent of both PC1 and PC2 (Fig. 3 and Extended Data Table 5). 
Although there was a decline in the probability of observing EcM trees 
with an increment in the availability of nutrients in inorganic form 
(PC1, Fig. 3a), the decline was small. That is, even in quadrats with 
higher availability of nutrients, the mean probability of observing an 
EcM tree remained above 0.75. The observed decline in the probability 
of observing EcM trees with increasing availability of soil nutrients 
was primarily driven by the low presence of EcM trees in high-fertility 
quadrats within three out of 16 sites (Fig. 3c). The three sites, namely, 
Danum Valley in Malaysia, Khao Chong in Thailand and Amacayacu 
in Colombia, exhibit 2%, 10% and 48% of quadrats without EcM trees, 
respectively (Supplementary Discussion). After excluding these three 
sites from the analysis to evaluate their impact on the observed nega-
tive association between the probability of observing EcM trees and 
PC1 at the fine scale, the negative association disappeared (Extended 
Data Table 6). Moreover, when the analysis at a fine scale was performed 
with 40 × 40 m quadrats (Methods), the negative association between 
the probability of observing EcM trees and PC1 was no longer evident, 
indicating the robustness of our analysis across spatial scales.

Our results are consistent with studies from specific lowland tropi-
cal forests (but refer to ref. 35). For example, in the southern part of 
Korup National Park, Cameroon, areas with a higher abundance of 
EcM trees are not associated with lower concentrations of soil nutri-
ents (P and N)36 (data from this study site was included in our analysis 

at a coarse scale; Extended Data Table 1). In Guyana, transect surveys 
indicate that forests with high dominance of the leguminous EcM tree 
species Dicymbe corymbosa and D. altsonii have high variability in soil 
texture and macronutrients37, suggesting a lack of association between 
soil attributes with the local distribution and abundance of EcM trees 
(also ref. 23). On the contrary, the EcM BA in a forest in Malaysia was 
higher on less fertile soil types, which may be due to the overall higher 
BA on those areas31, and is consistent with our finding that the propor-
tion of EcM BA increases with the total BA (Extended Data Table 5), 
particularly in SE Asia (Extended Data Fig. 2).

Our analysis demonstrates that EcM trees in lowland tropical for-
ests are widespread across a broad range of soil properties. Even if EcM 
fungi have a high capability to mobilize organic forms of soil nutrients, 
which are thought to predominate on nutrient-depleted soils, high 
variability in how much of the nutrients are ultimately transferred 
to their host plants can disrupt the expected association between 
the dominance of EcM-associated trees and soil fertility. Specifically, 
the exchange of C and nutrients between EcM hosts and fungi is not 
universally reciprocal. Some EcM fungi hoard nutrients, leading to a 
reduction in nutrient transfer to host trees, despite receiving carbon 
from them38 (also refs. 39,40). Under low soil nutrient availability, both 
AM41 and EcM40 mycorrhizal fungi may become nutrient limited42, 
thereby restricting nutrient transfer to their host. One potential strat-
egy to counteract fungal nutrient hoarding could be the prevalence 
of non-mycorrhizal plants or the rejection of the fungal infection by 
mycotrophic plants, particularly under conditions of extremely low 
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Fig. 1 | Study sites and variation in the relative abundance of EcM trees and 
soil properties. a, Location of the study sites and the relative contribution of 
EcM trees to BA. Plot identities are mapped in Extended Data Fig. 1. b,c, Biplots 
from two PCAs. PC1 and PC2 indicate the first and second PCs for each PCA, 
respectively. Biplot in b uses mean soil plot-level data (coarse scale) whereas the 
biplot in c uses spatially detailed (quadrat-level; 20 × 20 m) soil data (fine scale) 

from 30 and 16 lowland tropical forests, respectively. In b, letters indicate forest 
identity (Extended Data Fig. 1) and are colour-coded by major tropical region 
(neotropics, tropical Africa and tropical Asia). In c, each dot indicates a 20 × 20 m 
quadrat and is colour-coded by forest. Ellipses in c concentrate 95% of quadrats 
from each forest. Vectors in b and c illustrate the soil variables included in each 
PCA. Map made with Natural Earth.
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nutrient availability, an aspect that warrants further investigation. 
The non-reciprocal exchange of C and nutrient between mycorrhizal 
hosts and fungi adds to the complexity of the symbiotic relationship.

High variability in the exchange of resources between EcM sym-
biotic partners could result from the high phylogenetic diversity of 
EcM fungi43,44. EcM fungi exhibit remarkable diversity, comprising 
over 20,000 species from about 80 EcM fungal lineages44. In contrast, 
AM fungi descend from the phylum Glomeromycota (a proposed sys-
tematics places AM fungi in the Glomeromycotina subphylum within 
the phylum Mucoromycota45) and comprises about 345 species (as of 
January 2023; www.amf-phylogeny.com). However, although there has 
been considerable research on AM fungi due to their widespread dis-
tribution and established association with the majority of land plants, 
studies on EcM fungi have been relatively limited and predominantly 
centred on fungi (and hosts) from the Northern Hemisphere46. In addi-
tion, there is a widespread tendency to contrast EcM and AM fungal 
species as monolithic entities, disregarding their inherent diversity 
and variations within each group. In fact, not all evolutionary lineages 
of EcM fungi have retained the genetic ability to degrade organic mat-
ter47, EcM fungi commonly occur in both low- and high-fertility soils 
independent of host identity and host distribution48, and variations in 
the EcM fungal composition are linked with large differences in growth 
rates of the host partner49. These observations, coupled with others that 

indicate that even different isolates of the same EcM fungal species may 
have different traits and affect their host and environment in distinct 
ways50 suggest the existence of a high variability in the functional biol-
ogy of EcM fungi and that this variability could be linked to different  
edaphic conditions51.

The widespread distribution of EcM host lineages implicitly sup-
ports large variability in the functional biology of EcM fungi. Large 
well-known EcM host lineages (for example, Myrtaceae (Eucalyptus), 
Dipterocarpaceae, Fagaceae, Fabaceae (Detarioideae) and so on) occur 
across a very wide range of soil and hydrological environmental con-
ditions52, supporting the idea that EcM fungi can occur across a wide 
range of environmental conditions (also ref. 53), probably with dif-
ferent costs and benefits to the host plant49. These EcM fungi could 
encompass different genotypes and species with different functions54 
or the same ECM fungal genotypes and species with plastic responses 
to variation in their biophysical environment55,56. Given the potential 
for various functional biologies within mycorrhizal fungal guilds and 
the importance of mycorrhizae for the dynamics of natural ecosystems, 
it is imperative that we improve our understanding of the functional 
biology of mycorrhizae, particularly in lowland tropical forests, which 
are still poorly understood in comparison to northern temperate and 
boreal regions.

We also found that the relative abundance of EcM trees is lower in 
lowland neotropical forests than in lowland tropical forests in Africa 
and Asia (Fig. 2a,b and Extended Data Table 4). Historical biogeogra-
phy is an important factor explaining the low relative abundance of 
EcM trees in lowland neotropical forests52,57. In neotropical forests, 
most identified EcM hosts belong to non-dominant taxa (small trees, 
shrubs and lianas) within the genera Coccoloba (Polygonaceae), Gne-
tum (Gnetaceae) and Guapira, Pisonia and Neea (Nyctaginaceae)58. 
There are known exceptions within the Polygonaceae family (for exam-
ple, Coccoloba uvifera and Gymnopodium floribundum) that form 
monodominant patches of vegetation in their native ranges52. Domi-
nant EcM hosts in lowland neotropical forests belong to the Fabaceae  
(at least four species within the genus Aldina and at least three spe-
cies within the genus Dicymbe) and Dipterocarpaceae (at least one 
species, Pseudomonotes tropenbosii)57. Contrary to lowland neotropi-
cal forests, the pool of confirmed EcM-associated tree species (and 
individual tree sizes) is larger and appears to have a wide geographic 
distribution in the palaeotropics52,57. These differences in the pool of 
available EcM tree host species and their biogeographical distribution 
among tropical regions may explain the lower relative abundance of 
EcM trees in lowland neotropical forests. Whereas biogeographic 
differences have already been recognized in the literature about the 
current distribution of EcM plant species52, several questions remain 
unanswered. For instance, key knowledge gaps include why diptero-
carps prevail in Asia but not in other tropical regions or why detarioid 
legumes do not predominate in Asia. The answers to these questions 
are elusive and outside the scope of this study. Better botanical data 
on species’ taxonomies and geographic distributions, combined with 
corresponding phylogeographies, would help inform these knowledge 
gaps. Concomitantly, several thousand (about 9,000) tree species 
are yet to be discovered, with 40% of them estimated to be in South 
America59. This incomplete understanding of tree biodiversity hampers 
our ability to create accurate and detailed maps of mycorrhizal types 
in tropical regions. Acquiring comprehensive baseline information is 
essential for addressing this limitation.

Our results have important implications for both the mycorrhizal- 
associated nutrient economy framework and the current efforts to 
incorporate mycorrhizal nutrient acquisition into dynamic global veg-
etation models (DGVMs). Whereas the mycorrhizal-associated nutrient 
economy framework classifies temperate forests based on mycorrhizal 
associations and nutrient economies9, our findings reveal that the myc-
orrhizal associations in lowland tropical forests are far more complex 
and diverse than previously recognized. In lowland tropical forests, we 
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have identified substantial variability in the abundance of EcM trees 
within and across three major tropical regions, independent of soil 
variation. This challenges the assumption of clear gradients in nutrient 
economies in the transition from AM-dominated to EcM-dominated 
stands in lowland tropical forests, thereby questioning the applicability 
of the mycorrhizal-associated nutrient economy framework in these 
ecosystems. Differences in resource exchange among mycorrhizal 
partners, stemming from diverse evolutionary origins of mycorrhizal 
fungi, may decouple soil fertility from the advantage provided by 
mycorrhizal associations. Studies describing the functional biology 
of mycorrhizal symbiosis across a greater number of mycorrhizal and 
plant lineages are required, especially in the lowland tropics, where our 
current conception of the symbioses may be based on overinterpreted 
results (ref. 60) and biased by assuming that they function similarly 
to those in temperate and boreal regions. Furthermore, integrating a 
mycorrhizal framework into DGVMs to improve representations of the 
tropical biome under future climate change scenarios poses substan-
tial challenges due to the limitations of models assuming a universal 
prevalence of AM plants in lowland tropical forests, failing to capture 
the observed variations in mycorrhizal dominance. Particularly in 

tropical Africa and Asia, where EcM are prevalent, these limitations 
may become evident. Overall, our study underscores the complexity of 
mycorrhizal associations, raises questions about existing frameworks 
and highlights the difficulties in incorporating mycorrhizal dynamics 
into DGVMs for accurate representation of the tropical biome.

Methods
Tree census, estimation of BA and mycorrhizal type  
classification
The ForestGEO plots32 are divided into 20 × 20 m quadrats, the number 
of which varies between plots due to differences in plot sizes (from 
2 ha in Bukit Timah, Singapore, to 52 ha in Lambir, Malaysia). For each 
ForestGEO plot, all trees ≥1 cm in DBH are tagged, mapped, measured 
and identified to species, following standardized census protocols32. 
Tree species were assigned to a mycorrhizal type (AM or EcM) based on 
a recently compiled database of mycorrhizal types for plant genera61. 
The use of checklists to assign mycorrhizal traits to host plants has 
been widely criticized and extensively discussed elsewhere62–64. One 
of the criticisms is that these lists may include errors resulting from 
misidentification of root mycorrhizal structures or data derived using 
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and the y axes indicate the study site. Error bars indicate the 95% credible interval 
of the coefficient. Mean prediction lines (a,b), mean site-level coefficients (dots; 
c,d) and credible intervals (shaded areas and error bars) were estimated using 
200 draws from the posterior predictive distribution of the Zero-Altered Beta 
(ZABE) regression used to estimate the probability of observing EcM trees and 
their conditional relative abundance in BA. Colours represent 16 sites from 
the lowland tropical regions of Africa (Af., two sites), Asia (As., eight sites), the 
neotropics (Neo., five sites) and Oceania (O., one site). Dashed lines indicate that 
the predicted slopes (a,b) and estimated coefficients (c,d) are not different from 
zero. PC1 is positively correlated with soil nutrient availability (Fig. 1c).
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flawed diagnostic criteria. However, the checklist employed in this 
study addresses these limitations by comparing records of mycorrhizal 
status with expert opinions (ref. 61), thereby providing a more reliable 
list of plant mycorrhizal associations. For each quadrat, we calculated 
the proportion of BA contributed by EcM trees by dividing the BA 
(m2) of EcM trees by the total tree BA (m2). Multiple plant species are 
associated with both mycorrhizal fungi and N-fixing bacteria61,65. In our 
dataset, the quadrat-level number of individuals and BA of these plant 
species is generally less than 1% and were excluded from our analyses.

Soil sampling and measurement of soil properties
The standard soil sampling method involved taking one sample at the 
centre of each 40 × 40 m quadrat and another sample 2, 8 or 20 m in a 
randomly chosen direction to capture fine-scale variation in soil prop-
erties66. For the 2-ha plot at Bukit Timah, we collected one soil sample 
in every other 20 × 20 m quadrat. Samples were taken from the top 
10 cm, which contains many fine roots and integrates nutrient cycles. 
We measured exchangeable soil cations (Al, Ca, Fe, K, Mg, Na, Fe, Mn), 
plant-available P and pH on soils that had been air dried at ambient 
temperature and sieved at 2 mm. Soil pH was measured using a glass 
electrode in a 1:2 soil:solution ratio in water. Exchangeable soil cations 
were measured by extraction in 0.1 M BaCl2 (2 h, 1:30 soil to solution 
ratio), with detection by inductively coupled plasma optical-emission 
spectrometry on an Optima 7300 DV (Perkin-Elmer)67, except for Al, 
Mn and Fe for Ituri, Democratic Republic of Congo, which were quanti-
fied using Mehlich-III extracting solution68. TEBs were calculated as 
the sum of Ca, K, Mg and Na. Effective cation exchange capacity (ECEC) 
was calculated as the sum of Al, Ca, Fe, K, Mg, Mn and Na. Percent 
base saturation was calculated as (TEB ÷ ECEC) × 100. Plant-available 
P was extracted in Bray-1 solution69, with detection by automated 
molybdate colorimetry on a Lachat Quikchem 8500 (Hach), except 
for BCI, Panama, where P was quantified using Mehlich-III extract-
ant70. The Mehlich-III extracting solution is used as an alternative to 
the Bray-1 P (for P) and BaCl2 (for the base cations) extractants but 
gives relatively different concentrations depending on the acidity 
of the soil71. Previous studies have shown that Mehlich-III extraction 
yields higher results for Fe and Mn compared with other extraction 
methods in alkaline soils, such as BaCl2. This has been attributed to 
the higher acidity of Mehlich-III and its superior acidic buffering 
capacity, which enhances the solubility of Fe and Mn72. For the Ituri 
plot, where the mean pH is 4.03, indicating an extremely acidic soil, 
we did not anticipate large differences between the extraction meth-
ods. Similar studies have shown that Mehlich-III extracts more P than 
Bray-1 under acidic conditions71 (but refer to ref. 73). Because the pH 
in the BCI plot, Panama, is moderately acidic (mean = 5.79), we did 
not anticipate large differences. Moreover, we also conducted the 
analyses of the present manuscript excluding both the Ituri and BCI 
plots, and the results remained consistent. Soil texture (the propor-
tion of sand, clay and silt content) was estimated using the sieving 
soil analysis technique.

Imputation of missing soil values for the soil data at a  
coarse scale
Due to a variety of logistical considerations, several sites in the dataset 
at a coarse scale had missing values (NAs) for some soil variables (Sup-
plementary Table 1). We imputed those NAs in the compiled dataset 
using a regularized iterative PCA algorithm74 and then constructed 
the PCA on the complete dataset. This procedure involved three 
steps. We first selected a fixed number of dimensions via the function 
estim_ncpPCA from the R package FactoMineR (version 2.475) and the 
leave-one-out cross-validation method. The optimal number of fixed 
dimensions for this dataset was three. We then implemented the regu-
larized iterative PCA algorithm with the function imputePCA from the R 
package missMDA (version 1.1874) using the fixed number of dimensions 
estimated in the previous step. The regularized iterative PCA algorithm 

delivered the complete dataset by replacing the missing values, or NAs, 
with the (regularized) fitted values. Lastly, we constructed the PCA 
using the complete dataset via the function PCA implemented in the 
R package FactoMineR. The implemented gap-filling method did not 
have a direct impact on the results. For each observation in the com-
piled dataset, we added a constant value (one), transformed it using 
the natural logarithm and standardized it by calculating the z-scores 
before implementing the iterative PCA algorithm.

Interpolation of soil variables for the analysis at a fine scale
For the analysis at a fine scale, we used ordinary kriging implemented in 
the R package geoR (version 1.8-176) to obtain spatial predictions (spatial 
interpolation) for each soil variable at a 20 × 20 m spatial resolution. We 
transformed the soil variables using a Box–Cox power transformation 
with a lambda value of 0, 0.5 or 166. Assuming isotropy, we performed a  
polynomial trend-surface regression of the form s ≈ x + y + x2 + y2 + x *y,  
where s is the transformed soil variable, x and y are the coordinates in 
metres of each sampling location and x * y indicate the multiplication 
between x and y coordinates. We extracted the residuals from the 
trend-surface regression and used them to compute empirical vari-
ograms with the function variog. We fit a set of five models (Gaussian, 
circular, exponential, spherical and Cauchy) to the empirical vari-
ograms to estimate covariance parameters using the function variofit. 
We selected the best model by the principle of least squares and esti-
mated kriged means using ordinary kriging via the function krige.
conv. We added back the kriged means to the polynomial trend and 
back transformed the resulting spatially predicted soil variables to the 
original scale using the inverse Box–Cox transform. We constructed 
a PCA using the pooled 20 × 20 m kriged soil data across all plots to 
derive orthogonal composite variables to characterize the variability in 
soil chemical properties across and within plots with the PCA function 
in the FactoMineR package. For each kriged soil variable, we added a 
constant value (one), transformed it using the natural logarithm and 
standardized it by calculating the z-scores before constructing the PCA.

Statistical analyses for the coarse-scale data
For the analysis at a coarse scale, we modelled the mean relative 
abundance in BA of EcM trees as a function of the first and second PCs  
(Fig. 1b; PC1 and PC2, explaining 48.2% and 26.7% of the total variation, 
respectively) of the PCA constructed using mean-plot-level soil data 
to test their association across sites from three major tropical regions  
(or continent) (Africa (five sites), Asia (16 sites) and the neotropics  
(nine sites)). We included a discrete main effect for the tropical region 
and its interaction with both PCs. The discrete main effect assesses 
whether there are variations in the mean relative abundance of EcM 
trees across different regions. The interaction term evaluates whether 
the relationship between the relative abundance of EcM trees and soil 
attributes, as indicated by both PCs, varies among the different regions. 
We excluded one site (Wanang (tag ee); Extended Data Fig. 1) from the 
analysis at a coarse scale because it was the only site from Oceania in 
our dataset. By excluding Wanang, we were able to test for interactions 
between the region and the PCs. The response variable (the mean rela-
tive abundance in BA of EcM trees) is continuous and restricted to the 
open unit interval (0,1) (greater than 0 and less than 1; Supplementary 
Fig. 1a). Given the nature of the data (continuous-based proportions), 
we constructed a GLM assuming a beta error structure. We param-
eterized the beta error structure using a mean (μ) and a precision (ɸ) 
parameter (beta (μ, ɸ)) instead of the more common parameterization 
that includes two positive shape parameters77. μ is the mean of the 
response variable (the relative abundance of EcM trees) and is mod-
elled through a logit link function. ɸ is the precision, which is modelled 
through a log-link function, and for a fixed μ, the larger the value of ɸ, 
the smaller the variance of the response variable77. Both μ and ɸ can be 
modelled as a function of covariates under this parameterization of the 
beta distribution77. Accordingly, we also allowed ɸ to vary by region.
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Statistical analyses for the fine-scale data
For the analysis at a fine scale, we modelled the mean relative abun-
dance in BA of EcM trees as a function of the first (Fig. 1c, PC1, 51.4% of 
total variation) and second PCs (PC2, 18.6% of total variation) of the 
PCA constructed using fine-scale-level soil data to assess its associa-
tion with soil nutrient availability among plots and within each plot. 
The observation unit is the quadrat (20 × 20 m), and multiple quadrats 
are nested within each of the 16 plots. The response variable (the mean 
relative abundance on BA of EcM trees) is continuous, it takes values 
from the open unit interval (0, 1), and it has a large probability mass at 
zero (quadrats without EcM trees; Supplementary Fig. 1b). We used 
a GLMM, assuming a Zero-Altered Beta distribution (ZABE)33,34. The 
ZABE distribution is a piecewise distribution or joint model with two 
components. A discrete component uses a Bernoulli distribution to 
assess if an event occurs, and a continuous component uses a beta 
distribution to assess the event’s intensity given that it occurs33,34. The 
ZABE distribution has three parameters: θ for the discrete component 
(or Bernoulli process) and μ and ɸ for the continuous component  
(or beta process). θ is the probability that y is one, that is, P(y = 1) = θ, and 
μ and ɸ follow the previous description of the beta distribution, that is, 
beta (μ, ɸ). The Bernoulli distribution is viewed as the distribution for 
EcM occurrence in a quadrat. The beta distribution is considered for 
the relative abundance of EcM trees in the same quadrat, conditional 
on the presence of EcM trees. Both θ and μ were modelled through a 
logit link function and ɸ through a log-link function. It should be noted 
that each component of the ZABE model (discrete and continuous 
component) can include the same or a different set of covariates and 
random effects34,78.

In the model, we included the main effects of both PCs (PC1 and 
PC2, Fig. 1c) in both components of the ZABE model to provide a 
community-level (fixed effects) indication of the association of soil 
nutrient availability as indicated by both PCs with the probability of 
observing EcM trees (discrete component) and with their relative 
abundance (continuous component). We included site (forest plot 
identity) as a random intercept for both components of the ZABE 
model. This random intercept allowed the probability of observ-
ing EcM trees and their relative abundance to vary among plots. We 
included site-level random slopes for both PCs in both components 
of the ZABE model. This was done to allow the community-level coef-
ficients (fixed effects) of the covariates (both PCs) to vary among plots. 
It also provided a within-plot indication of the association of soil nutri-
ent availability with the probability of observing EcM trees and with 
their relative abundance. Local variations in topography are known to 
impact soil properties and community composition79. We calculated 
quadrat-level slope and convexity (the mean elevation of one 20 × 20 m 
quadrat relative (minus) to the mean of its immediate neighbours) 
from elevation data using the function fgeo_topography from the 
fgeo package (version 1.1.480). We included these two covariates and 
the quadrat-level elevation in both components of the ZABE model 
to characterize the terrain among (as fixed effects) and within forests 
(as random slopes). We did not include mean annual air temperature 
and mean annual precipitation in the model because the former was 
relatively constant across plots, and their within-plot variation among 
quadrats was probably minimal. The total quadrat-level BA was highly 
variable within and among plots (Extended Data Fig. 2a), indicating 
high variation in forest structural complexity, successional stages and 
forest maturity among and within plots81. We included quadrat-level 
total BA as an additional covariate in both processes of the ZABE model 
to account for this variability. This addition also helped to control for 
differences in exposure, as it accounts for a higher opportunity of 
observing EcM trees and a higher relative abundance of EcM trees in 
quadrats with larger BAs or the opposite. Total BA was transformed 
with the natural logarithm and was included as both fixed and random 
(slope) effects. All predictors included in the model were standardized 
by calculating their z-score. This standardization allowed parameters 

to be comparable. All R2 determined by pairwise correlations among 
covariates among forests were <0.4 (Supplementary Table 2), indi-
cating that all the described covariates could safely be included in 
the model82.

We accounted for the spatial dependency in both components 
of the ZABE model by specifying a spatially structured random effect 
using a reparameterization of the Besag–York–Mollié (BYM2) model83. 
The BYM2 model in the continuous component of the ZABE model 
was incorporated as a copy of the BYM2 model in the discrete compo-
nent. That is, the spatial random effect in the continuous component 
(copy) shares the same hyperparameters as the discrete component 
(original) but is multiplied by a scale parameter β estimated from the 
data84. The incorporated copy feature also links both components of 
the ZABE model.

We performed an additional analysis for the data at a fine scale to 
test whether our results are robust to differences in the spatial scale 
(there might be just a few emergent trees in a 20 × 20 m quadrat) by 
using a resolution (quadrat size) of 40 × 40 m instead of the 20 × 20 m 
resolution. Using a resolution of 40 × 40 m implied suppressing an 
entire row and column from the plots matrices.

Statistical software and model evaluation and inference
We performed all the analyses in R (version 4.2.085). For the analysis 
at a coarse scale, we fitted the beta model in Stan86, which fits models 
using the Hamiltonian Monte Carlo algorithm, with its interface to R 
via cmdstanr (version 0.4.087) and using the package brms (version 
2.16.188,89). We estimated the model using four chains of 2,000 itera-
tions, each with a burn-in fraction of 1/2. We monitored Markov Chain 
mixing properties and checked parameter convergence graphically 
via trace plots of the estimated coefficients and by checking the Rhat 
metric90. For the analysis at a fine scale, we fitted the ZABE model 
(GLMM) using INLA (version 22.05.0791) in R because of its speed and the 
straightforward implementation of spatial random effects. A descrip-
tion of the priors used in both analyses is described in Supplementary  
Note 1. We inspected the goodness-of-fit of the full model for the analy-
ses at a coarse (Supplementary Fig. 2a) and fine scale (Supplementary 
Fig. 2bc) via posterior predictive model checks92, where predictions 
from the fitted model were compared to the observed data. Results 
are presented based on the mean and 95% credible intervals indicated 
in square brackets.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
ForestGEO plot data can be obtained upon request via the ForestGEO 
portal at http://ctfs.si.edu/datarequest/. All data sources are listed in 
Extended Data Table 1. PCA axes and the contribution (proportion) 
of EcM trees to basal area can be found at https://doi.org/10.5281/ 
zenodo.10044772 ref. 93.

Code availability
The code to run the analyses at both coarse and fine scales can be found 
at https://doi.org/10.5281/zenodo.10044772 ref. 93.
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Extended Data Fig. 1 | Location of the 31 study sites. Letters indicate the tags 
used to identify plots in the principal component analysis (PCA) of soil data, 
constructed using coarse scale soil data (Fig. 1b and Extended Data Table 1).  

The names of each study site are enclosed in parentheses. Thirty sites were used 
in the analysis at a coarse scale, whereas 16 sites (shown in bold and italics) were 
used for the fine scale analysis (see Methods). Map made with Natural Earth.
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Extended Data Fig. 2 | Variation in quadrat-level basal area and its 
association with the probability of observing EcM trees and their relative 
abundance in 16 lowland tropical forests. a, Shows the distribution of 
the quadrat-level total basal area (BA) after applying a natural logarithm 
transformation. The x-axis represents the transformed total BA for each  
20 × 20 m quadrat, whereas the y-axis indicates the study site. Vertical lines at 
the base of each density curve indicate individual observations. b,c, Present 
mean site-level coefficients, with panel b representing the probability (Prob.) 
of observing EcM trees and panel c for their relative abundance (conditional 
on the presence of EcM trees; Cd. Rel. Abun.) in relation to the quadrat-level 

total BA. The x-axes show the value of the coefficient on the logit scale, with the 
y-axes again showing the study site. Error bars show the 95% credible interval 
of the coefficient. These coefficients and their credible intervals derive from 
200 draws from the Zero-Altered Beta (ZABE) regression’s posterior predictive 
distribution. This regression estimated the probability of observing EcM trees 
and their conditional relative abundance in BA, with the total quadrat-level basal 
area being logarithmically transformed before the analyses. The study includes 
16 sites from lowland tropical regions in Africa (Af., two sites), Asia (As., eight 
sites), the neotropics (Neo., five sites), and Oceania (O., one site). Dashed lines 
indicate that the coefficients are not different from zero.
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Extended Data Table 1 | List of the 31 study sites94–102

Tag is an identification ID for each site (see Extended Data Fig. 1). Region indicates the major tropical region. Site indicates the site name. Tree data and soil data specify the data sources 
for the tree and soil data for each forest, respectively. DBH cut-off indicates the minimum DBH that was sampled. † For the Newbery P-HEM (tag j) and P-LEM (tag m) sites, we used the mean 
(proportion) contribution of EcM trees to basal area, and the mean soil data from both the P-HEM and P-LEM transects, as reported in36. * The sole site from Oceania (Wanang, tag ee) was 
excluded from the coarse scale analysis due to sample size (see Methods, statistical analyses for the coarse-scale data).
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Extended Data Table 2 | List of the 16 study sites for the analysis at a fine scale

Tag is an identification ID for each site (see Extended Data Fig. 1). Region indicates the major tropical region (neotropics [five sites], Asia [eight sites], Africa [two sites], and Oceania [one site]). 
Site indicates the site and country name. Elev-m is the mean elevation in meters. MAT-C is the mean annual temperature in Celsius. MAP-mm is the mean annual precipitation in mm. N. dry 
months is the mean number of dry months in a year. Size (ha) indicates the area in hectares. Longitude and Latitude give the coordinates of each site. N. is the number of quadrats (20 × 20 m) 
per site and N. Zeros indicates the number of quadrats where no EcM individuals were found. Biophysical data were obtained from32,103.
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Extended Data Table 3 | Principal component analyses (PCA) of soil data at coarse and fine scales

We conducted two separate PCA analyses on soil attributes for lowland tropical forests. The ‘Coarse scale soil data’ analysis used 14 soil attributes from 30 forests, while the ‘Fine scale 
soil data’ used 9 soil attributes from 16 forests. For both analyses, we calculated the variable contribution (%), eigenvalues, variance, and cumulative explained variance for the first two 
components (PC1 and PC2). In bold are the contributions (%) whose |loadings| (loadings are equal to the coordinates of the variables divided by the square root of the eigenvalue associated 
with the component) were greater than the mean, indicating the most important contributions. Symbols in parentheses indicate the direction of the association between the soil variable 
and the PCs.
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Extended Data Table 4 | Coefficients for the analysis of the relative abundance of EcM trees in relation to soil properties at a 
coarse scale

Parameter is the variable included in the model. Estimate, LCI and UCI are the mean estimate, the lower and the upper 95% credible intervals, respectively, calculated from the posterior 
predictive distribution. Coefficients with credible intervals that contain zero are considered to have negligible influence, whereas coefficients in bold exclude zero and are considered 
influential. The reference level for the categorical variable ‘Region’ is Africa.
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Extended Data Table 5 | Coefficients for the analysis of the relative abundance of EcM trees among and within 16 lowland 
tropical forests at a fine scale

Parameter is the variable included in the model, and its estimate, LCI, and UCI (95% credible intervals) are calculated from the posterior predictive distribution. The table is partitioned both 
horizontally and vertically. Horizontally, the left section shows fixed effect coefficients, whereas the right section shows the random effect coefficients. Vertically, the table is split into three 
sections. The top and middle sections show coefficients for the discrete and continuous components of the ZABE model, respectively. The bottom section lists coefficients for the spatial 
random terms (BYM2 model) for both components. Fixed effects coefficients in bold exclude zero and are considered influential, whereas fixed effects coefficients with credible intervals that 
contain zero (not in bold) are considered negligible. Random effects are restricted to be positive. Precision is indicated by τ, with τ = 1/√σ, where σ is the standard deviation. For the spatial 
random terms in the discrete component, the parameter ‘τ ID.z’ indicates the posterior of the precision of the spatial field and the parameter ‘ɸ ID.z’ indicates the posterior of the precision of 
the mixing parameter (see104 for details). The parameter ‘β ID.o’ in the spatial random terms for the continuous component represents the estimated scale parameter. All continuous predictors 
in the model were standardized using their z-score, and the total basal area was transformed using the natural logarithm before standardization ((log) BA).
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Extended Data Table 6 | Coefficients for the analysis of the relative abundance of EcM trees among and within 13 lowland 
tropical forests at a fine scale

Parameter is the variable included in the model, and its estimate, LCI, and UCI (95% credible intervals) are calculated from the posterior predictive distribution. The table is split into two 
sections. The top and bottom sections show coefficients for the discrete and continuous components of the ZABE model, respectively. Coefficients in bold exclude zero and are considered 
influential, whereas coefficients with credible intervals that contain zero (not in bold) are considered negligible. All continuous predictors in the model were standardized using their z-score, 
and the total basal area was transformed using the natural logarithm before standardization ((log) BA). This analysis excludes three forests: Amacayacu in Colombia, Khao Chong in Thailand 
and Danum Valley in Malaysia. Random effects are not shown.
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